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Abstract

We describe a new algorithm for generating all maximal bicliques (i.e. complete bipartite, not necessarily induced
subgraphs) of a graph. The algorithm is inspired by, and is quite similar to, the consensus method used in propositional
logic. We show that some variants of the algorithm are totally polynomial, and even incrementally polynomial. The total
complexity of the most efficient variant of the algorithms presented here is polynomial in the input size, and only linear
in the output size. Computational experiments demonstrate its high efficiency on randomly generated graphs with up to
2000 vertices and 20,000 edges.

(© 2003 Elsevier B.V. All rights reserved.

Keywords: Maximal complete bipartite subgraph; Biclique; Consensus-type algorithm; Algorithmic graph theory; Incremental
polynomial enumeration

1. Introduction

The literature dealing with complete bipartite (not necessarily induced) subgraphs of a graph is rich and diverse. The
problem of covering the edge set of a graph by a smallest family of complete bipartite subgraphs has received considerable
attention. Chung [10] proved the conjecture of Bermond [5] asserting that lim,—, o p(n)/n=1, where p(n) is the minimum
number of complete bipartite subgraphs that cover the edges of a graph with n vertices. In [12], Chung et al. examined the
similar problem of partitioning the edge set of a graph into complete bipartite subgraphs. Among the many contributions
to this direction of research we mention Chung [11], Tuza [42], Dawande et al. [14], Hochbaum [28], Bylka et al. [8],
Doherty et al. [15].

Hammer [24] noticed that, to every covering of the edge set of a graph G by a family B of complete bipartite subgraphs,
one can associate a pseudo-Boolean function fg, i.e., a real-valued function in 0-1 variables, whose variables are in
one-to-one correspondence with the complete bipartite subgraphs in B, and whose maximum equals the stability number
of G. This observation lead to the establishment of various links between problems in graph theory and pseudo-Boolean
functions (see [27,3,4,13,19]). In particular, quadratic graphs, were defined in [27] as graphs with the property that, among
the associated pseudo-Boolean functions, there is at least one which can be represented as a degree-two polynomial. Also,
the same observation was central in the elaboration of the struction method [17] for calculating the stability number of a
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graph; it was proved in [25,26,22] that the struction method provides polynomial solutions for finding the stability number
of certain classes of graphs.

Note that, since the number of variables of the pseudo-Boolean function fg in the above construction is equal to the size
of B, it is clearly advantageous to determine families B consisting of the smallest possible number of complete bipartite
subgraphs covering the edge set of G. It is also clear that in order to achieve this aim, we can restrict our attention to
coverings which use only maximal bipartite subgraphs.

Another important problem which requires the enumeration of the maximal bipartite subgraphs of a graph arises in the
context of data compression, as described in [1].

The goal of this paper is to describe an algorithm for generating all the maximal complete bipartite subgraphs of a
graph. Let G = (V,E) be a graph without loops and multiple edges, having the vertex set V' = {1,2,...,n} and the edge
set E. In this paper, we shall call the (maximal) complete bipartite—not necessarily induced—subgraphs of a graph, its
(maximal) bicliques.

The maximal biclique generation problem (MBGP) consists in generating all the maximal bicliques of a given graph.
As already observed by Eppstein [18], the MBGP cannot be solved in polynomial time with respect to the input size, since
the size of the output can be exponentially large in n. Indeed, consider for example a complete graph with n vertices.
Since each proper partition of its vertex set into two subsets induces exactly one maximal biclique, the number of its
maximal bicliques is 2"~' — 1. Also, notice that MBGP is at least as hard as the NP-hard edge biclique problem, i.e., the
problem of finding a biclique with a maximum number of edges in a graph [38], (see also [14] for the weighted version
of the edge problem, and [20,29,34,35,43,23,36] for related results).

In this paper, we shall describe a consensus algorithm for solving MBGP. The algorithm closely resembles the Blake
and Quine classic “consensus method” for finding all the prime implicants of a Boolean function. We develop the basic
steps of this algorithm in Section 2. In Section 3, we show that appropriate modifications of the consensus method yield
total polynomial algorithms for MBGP, i.e., algorithms which are polynomial in the total combined size of the input
and of the output. We also provide a reduction of MBGP to the problem of generating all maximal cliques of a graph,
yielding another total polynomial algorithm for MBGP. In Section 4, we describe two classes of graphs for which the
consensus algorithm provides an input-polynomial solution to MBGP. Section 5 presents briefly an implementation of the
consensus algorithm. Finally, in Section 7 we present the results of numerous computational experiments which indicate
clearly the high efficiency of the proposed consensus procedures.

2. The consensus algorithm

We shall describe below a solution method of the MBGP, which resembles closely the consensus method of Blake [6]
and Quine [40] for finding the prime implicants of a Boolean function. According to [31,16,39], Malgrange has developed
a consensus approach in [33] to find in a 0-1 matrix the maximal submatrices consisting only of ones—a problem which
is clearly equivalent to the MBGP in the case of bipartite graphs.

Let us introduce now some definitions. Let G be a graph and let X, ¥ be two disjoint non-empty subsets of the vertex
set, with the property that every vertex in X is adjacent to every vertex in Y. The biclique of G having the bipartition
sets X and Y will be denoted by (X, Y). (Note that (X,Y)=(Y,X).)

Let By = (X1,7Y1) and B, = (X2, Y2) be two bicliques of G. We say that By absorbs or contains By if X, C X; and
Yz Q Y], or 1fX2 Q Y] and Yz QXI.

If YiNY, # (), we call (X1UXz,Y1NY,2) one of the consensuses of By and B,. Similarly, each of those pairs of subsets
XiNX,iuh), (MiuXe,XiNT), (X1 UYs, Y1 NX>) which define bicliques (i.e., which involve two non-empty subsets)
are consensuses of By and B;. In this way, a pair of bicliques may have 0, 1, 2, 3 or 4 consensuses.

A consensus approach to MBGP starts with a collection C of bicliques which covers the edge set of a graph G. Such a
collection is easily available, for instance by simply considering all the individual edges of the graph, viewed as bicliques.
A similar straightforward way of obtaining C is to define it as the collection of all the stars centered in the vertices of
the graph G.

Using the above terminology we can now define a consensus algorithm as a sequence of transformations on the
collection C. The method applies repeatedly two transformations, the absorption and the consensus adjunction—described
below—and stops when none of these steps can be applied.

(i) Absorption: TIf the biclique B, in C absorbs the biclique B, in C, then remove B, from C.
(ii) Consensus adjunction: For any two bicliques B; and B, in C, if any of the consensuses of B; and B exists and is
not absorbed by a biclique already in C, then add it to C.
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Two trivial observations are in order. First, if the collection C covers the edge set (i.e., every edge of G is contained
in at least one of the bicliques of C), then this property will be preserved by both of the transformations above. Second,
it is clear that the repeated application of the transformations above will always produce collections consisting only of
bicliques of G.

The validity of the consensus approach is based on the following result.

Theorem 1. If C is a collection of bicliques of the graph G which covers the edge set of G and if C is the collection of
bicliques obtained from C by repeating the transformations in the consensus algorithm described above as many times
as possible, then C consists of all the maximal bicliques of G.

Proof. First of all, let us notice that the algorithm terminates after a finite number of steps since the total number of
bicliques of G is finite, and a biclique which is removed from C (because of absorption) can never re-enter C.

We claim that, when the algorithm terminates with the list C, every biclique of G is absorbed by a member of C.
This implies, in particular, that C contains all the maximal bicliques of G, and no other biclique (since the absorption
step cannot be applied any longer).

In order to prove the claim, we consider a biclique B* = (X*,Y™) and we proceed by induction on k = |[X*| + |V™|.
Note that £ > 2 since both X* and Y™ are non-empty, by definition of bicliques.

If £ = 2, then the claim holds since the initial collection C covers the edges of G.

If k£ > 3, then we can assume without loss of generality that X™ contains at least two vertices. Let us partition X ™ into
two proper subsets X’ and X”. The bicliques B'=(X’,Y*) and B” =(X",Y™") have strictly fewer edges than B*. Therefore,
by induction, each of these bicliques is absorbed by a biclique in C: say B’ is absorbed by B € C and B is absorbed
by By € €. Then, the (unique) consensus B* = (X' UX",Y*) of B' and B” is absorbed by the corresponding consensus
of By and B,, which is itself absorbed by some biclique B3 in ¢ (since consensus adjunction cannot be performed on
C ). This shows that B* is absorbed by a member of C, and the proof is complete. [

Example 1. Consider the graph G =(V, E) with vertex-set V' ={a,b,c,d,e, '} and edge set E={(a,b),(a,c),(a,d),(b,c),
(b,e),(c, f)}-

Let us consider the following family of bicliques covering the edge set of G: C={B,B,, B3}, where B =({a},{b,d}),
B> =({b},{e}) and B3 = ({c},{a,b, f}). Starting with C, the application of the above algorithm results in the following
steps:

(1) The only consensus of By and B; is Bs = ({b},{a,e}), which we add to C.

(2) B, being absorbed by Bs, can be removed from C.

(3) The consensuses of By and Bs are Bs = ({a},{b,c,d}) and Bs = ({b},{a,c}), and can be added to C.

(4) B, is absorbed by Bs and can be removed from C.

(5) The consensuses of B; and B4 are ({a},{b,c}) (which, being absorbed by Bs, will not be added to C) and B; =
({b},{a,c,e}), which is added to C.

(6) We remove B4 and Bg from C, both being absorbed by B7.

Any consensus of any of the remaining bicliques Bs, Bs, and B; is absorbed by one of these bicliques, and cannot be
added to C.

Therefore, the algorithm terminates with the collection of all maximal bicliques of G: C={({a}, {b,c,d}),({b}.{a.c,e}),
({c}{a.b, D}

Obviously, the consensus adjunction and the absorption operations could have been applied in another order, but the
resulting collection C—as shown by Theorem 1—would have been the same.

3. Polynomial versions of the consensus algorithm

In this section, we shall show that appropriate modifications of the consensus algorithm allow to substantially improve
its worst-case complexity. We first need some terminology.

Let G be a graph and let A4 be an algorithm for MBGP. We denote by n(G) (or simply n) the number of vertices of
the graph G, and by S(G) (or simply f) the number of maximal bicliques of G. When running on the instance G, A
successively outputs the maximal bicliques By, Bs,...,Bg. We denote by 7(k) the running time of A4 until it outputs By,
for k=1,2,..., . Moreover, we let 7(0) =0 and we denote by t(f + 1) the total running time of A.
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Following Johnson et al. [30], we say that:

e A runs in polynomial total time if its total running time 7(ff + 1) is polynomially bounded in » and f;
e A runs in incremental polynomial time if ©(k) — ©(k — 1) is polynomially bounded in n and k, for k =1,2,..., + 1;
e A runs with polynomial delay if (k) — t(k — 1) is polynomially bounded in n, for k =1,2,...,5 + 1.

(Our definition of incremental polynomial time is slightly different from that in [30], but the difference will be immaterial
for our purpose).

Note that the running time of a totally polynomial algorithm may be exponentially large in n before it even outputs
the first maximal biclique, whereas the time elapsed between the output of the (k — 1)st and kth maximal biclique
is reasonably short (polynomially bounded in n and k) for an incrementally polynomial algorithm, and even shorter
(polynomially bounded in n) for a polynomial delay algorithm.

These different versions of “output-sensitive” polynomiality have proved useful in previous investigations of algorithms
for generating combinatorial objects; for early references, see e.g., Paull and Unger [37], Tsukiyama et al. [41], Lawler
et al. [32], or Johnson et al. [30]. We are now going to examine different versions of the consensus algorithm for the
MBGP, and evaluate their complexities.

3.1. Complexity of the consensus algorithm

The basic consensus algorithm, as presented in the previous section, does not run in polynomial total running time:
more precisely, its running time may be exponential in the size of the input graph and in the number of its maximal
bicliques, because it can produce along the way a large number of non-maximal bicliques. These comments are illustrated
by the next example.

Example 2. Let us consider the complete bipartite graph K,,, on two disjoint n-element sets of vertices, and consider as C
the collection of all its individual edges (each viewed as a complete bipartite subgraph). Let us apply now the consensus
method in such a way that it produces all the bicliques having exactly n vertices in the first sequence of transformations.
However, the number of those bicliques is

()05) =

and therefore, the algorithm runs in exponential time with this particular order of transformations.

On the other hand, let V' = {v},v,...,v,} and V"' = {v{,v%,...,v))} be the bipartition of the vertex-set of K, , such
that K, ,=(V',V"). By forming the consensus of ({v},{v}}) with ({01}, {v7}), we obtain the biclique ({v}}, {v,v5'}).
In the next steps, we shall form in a similar way the bicliques ({v}}, {v{,v5,v5}) and so on, until we form ({v}},V"). In
a similar way, we can produce all the bicliques ({vj}, V"), i =1,2,...,n. The number of transformations in this process
is of n(n — 1) consensus adjunctions and 2n(n — 1) absorptions. Forming now the consensuses of two K ,’s we obtain a
K> ,. The consensus of this K5, with another K , is a K3 ,. Continuing in this way, in n— 1 steps of consensus adjunction
and 2(n — 1) steps of absorptions, we produce K, ,, showing that with a proper order of transformations, the total running
time of the algorithm is polynomial in its input and output size (and in this particular case, in the input size only).

In the next sections, we are going to show that, by adequate modifications of the steps of the consensus algorithm, it
can be guaranteed to run in polynomial total time, and even in incrementally polynomial time.

3.2. An incrementally polynomial consensus algorithm

The new version of the consensus algorithm—which we shall call the modular consensus algorithm (M CA)—relies on
a simple idea: whenever a consensus adjunction operation is performed, we want to make sure that a maximal biclique is
added to the current list C. In this way, C only contains maximal bicliques throughout the execution of the algorithm,
and hence its length never exceeds f. (A similar idea has been used by Boros et al. [7] for the generation of all prime
implicants of certain Boolean functions).

For this purpose, let us define a new operation which can be easily performed on an arbitrary biclique B:

(iii) Extension of B: Generate a maximal biclique which absorbs B.
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Let us now define the
Modular consensus algorithm (MCA)

e Start with a list Cy of at most m maximal bicliques that cover the edges of the graph G. Let C := (.
e Repeat: For every pair of distinct bicliques B; € C and B, € C if B, and B, have a consensus B3 which is not absorbed
by any member of C, then extend B3 to a maximal biclique B4, and add B4 to C.

We call modular consensus the sequence of operations performed on each pair of bicliques B; and B in the Repeat-loop
of MCA.

Theorem 2. Upon termination of the modular consensus algorithm, the list C contains exactly the maximal bicliques of
G. The algorithm can be implemented to run in incremental polynomial time, in such a way that ©(k)=0(k*(m+nlog, k)),
for k=1,2,...,B. In particular, its total running time is O(*(m + nlog, B)) = O(n*f*).

Proof. Upon termination, C contains a collection of maximal bicliques which cover the edges of G. Moreover, no
absorption or consensus adjunction can be performed on this collection. Therefore, by Theorem 1, C contains exactly the
maximal bicliques of G.

As above, we assume that the maximal bicliques are labelled B, B>,...,Bp, in the order in which they are produced
by the algorithm. For k = 1,2,...,, By is added to the list at time (k). Note that at most O(k*) modular consensuses
can be completed until time (k). Each such module requires O(1) operations of consensus formation, absorption testing
and extension. The consensus and extension operations can easily be performed in O(m) time. Until time 7(k), absorption
checking can be done in O(nlog, k) time using binary search: this requires a data structure which maintains {B, B2,..., By}
as an ordered list throughout the algorithm, and which allows insertion to be performed efficiently (see [2]); more details
will be given in Section 5).

In conclusion, we see that ©(k) = O(k*(m +nlog, k)) for k=1,2,..., B. This completes the proof, since m = O(n*) and

log, p = O(n).

Example 3. Consider the graph G=(V, E) with '={1,2,...,6} and E={(1,2),(1,6),(2,3),(3,4),(3,6),(4,5),(4,6),(5,6)}.
The modular consensus algorithm performs the following steps:

1. Start with the following collection of maximal bicliques that cover the arcs of G: C = {Bi,B,, B3, Bs}, where
By = ({173}7 {276})a B, = ({3}7 {274’ 6}): By = ({4}’ {3’576})’ By = ({3> 5}> {4> 6})

2. All the consensuses of B and B, are already contained in C.

3. The only consensus of By and Bs not already contained in C is ({1,3,4},{6}). The maximal biclique obtained by
extending this consensus is Bs = ({1,3,4,5},{6}), and it is added to C.

4. All the consensuses of all the other pairs of bicliques are already contained in C.

The algorithm terminates with the collection C= {B1, B2, B3, B4, Bs} of all maximal bicliques of G.

It should be noted that the modular consensus algorithm can in fact be viewed as a specialized version of the consensus
algorithm. More precisely, for i = 1,2,...,n, let S(i) denote the star adjacent to vertex i, i.e., S(i) is the biclique
({i},{j: {i.j} €E}). Let us say that a collection of maximal bicliques C covers the stars of G if each of the stars
S(1),8(2),...,8(n) is contained in some member of C. It can be checked that an arbitrary biclique B can be extended to
a maximal biclique by performing successive consensus steps on the list (B,5(1),S5(2),...,S(n)) or, alternatively, on any
list (B, C) such that C covers the stars. Therefore, the iterations of MCA can be minimized if we initialize the consensus
algorithm with the list (S(1),S(2),...,8(n)) and if we perform its operations in the appropriate order (corresponding to
the successive modular consensuses). In the next section, we are going to build on this observation to further improve
the complexity of the consensus algorithm.

3.3. A better incrementally polynomial consensus algorithm

Let us now define the
Modular input consensus algorithm (MICA)

e Start with a list Cy of at most » maximal bicliques that cover the stars of the graph G. Let C := (.
e Repeat: For every pair of distinct bicliques B; € Gy and B, € C, if By and B, have a consensus B3 which is not absorbed
by any member of C, then extend B; to a maximal biclique Bs, and add B, to C.
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Note that the difference between MCA and MICA is that, in MICA, at least one of the two bicliques used when a
consensus step is applied, belongs always to the initial list Cy. (A similar specialization of the Boolean consensus method
has been investigated in the artificial intelligence literature; see e.g., [9]).

Theorem 3. Upon termination of the modular input consensus algorithm, the list C contains exactly the maximal
bicliques of G. The algorithm can be implemented to run in incremental polynomial time, in such a way that ©(k) =
O(nk(m + nlog, k)) for k=1,2,..., . In particular, its total running time is O(nf(m + nlog, B)) = O(n’B).

Proof. To establish the validity of MICA, it is sufficient to repeat the proof of Theorem 1 with minor modifications which
we explicitly spell out for further reference.

In the induction argument (last part of the proof of Theorem 1), let k£ denote the number of vertices in X™, i.e., k=|X"|.
If k=1, then (X*,Y") is absorbed by a star of G, and hence (X™*,Y") is absorbed by an element of the initial list Cy.

If k > 2, then X™* can be partitioned into two subsets X’ and X"’ such that |X'| =1 and |X"'| = 1. Thus, the biclique
B'=(X',Y*) is a star, and we can assume that it is absorbed by a maximal biclique B; € Cy. The argument can now be
completed as in Theorem 1.

The complexity of the algorithm can be analyzed as in the proof of Theorem 2. Just observe that, in MICA, at most
O(nk) modular input consensus steps can be completed until time (k).

Since f is typically much larger than n, the complexity of the modular input consensus algorithm is typically better
than the complexity of the modular consensus algorithm. This conclusion will be amply confirmed by the numerical
experiments described in Section 6.

3.4. Polynomial delay algorithms

Tsukiyama et al. [41], and later Johnson et al. [30], have proposed different polynomial delay algorithms for generating
all maximal cliques of a graph. Lawler et al. [32] have observed that a similar algorithmic principle actually yields
polynomial algorithms for a rather large variety of combinatorial generation problems (namely, for the generation of all
maximal independent sets in special classes of independence systems).

We now briefly describe a transformation which allows to apply these previous results directly to the MBGP problem.

Given a (loopless) graph G = (V,E), with V' = {vi,v2,...,0.}, We associate to G its double cover 2G = (L U R; 4),
where 2G is the complement of a bipartite graph. In this definition, the sets L={/i,»,...,1,} and R={r1,r2,..., 1} are
two disjoint copies of ¥, and the edge set 4 is defined as

A= {{l,‘,l’j},{lj,l’,‘}i i,jE {1,2,...,1’1},{1),’,1)/'} EE}

U {{l[,lj},{l"[,l"j}l i,jE{l,Z,...,n}, l<]}

Remark that there is a one-to-one correspondence between the bicliques of G and the symmetric pairs of cliques of
2G. More precisely, consider a biclique (X,Y) of G and denote the copies of the sets X and Y in L and R by Lx, Ly,
Rx, Ry, respectively. Then, it is easy to see that there is a one-to-one correspondence between the biclique (X, Y) and the
symmetric pair of cliques ((Lx,Ry),(Ly,Rx)). This observation allows to reduce in O(nz) time the MBGP for the general
graph G to the problem of generating all maximal cliques of its double cover 2G.

Now, the algorithms in [41,30] can be used to generate all maximal cliques of 2G with delay O(n(n* — m)) = O(n*).
Therefore, the total running time of these algorithms is O(n*f). It is interesting to note that this is the same total complexity
as for the modular input consensus algorithm, although the clique generation algorithms appear conceptually very different
from the consensus algorithms. A brief comparison of some computational experiments carried out with these algorithms
will be presented in Section 6.

4. Some classes of bigraphs for which MBGP can be solved polynomially

While the number of maximal bicliques of a graph can be exponential in its size, some classes of specially structured
graphs have only a polynomial number of maximal bicliques, and therefore, MBGP can be solved in polynomial time for
them. In this section, we present two special classes of graphs for which MICA works in polynomial time.

It should be noted that specialized algorithms—based or not based on a consensus type approach—which exploit the
specific nature of particular classes of graphs can lead to highly efficient solutions of the MBGP for these classes of
graphs. As an example, we mention the linear time algorithm of Eppstein [18] for the class of graphs with bounded
arboricity, which includes in particular the class of bounded degree graphs discussed below.
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The two examples described below concern classes of graphs having polynomially many maximal bicliques. It is clear
that for such classes MICA performs polynomially, even without any specific adaptation.

Graphs with bounded degree. Let d be a fixed integer and let us consider the family of all graphs whose node degrees
are bounded by d. For each graph G in this class, f(G) < n2?. Indeed, let us evaluate the number of maximal bicliques
of G which contain some fixed vertex v. Consider such a maximal biclique, say (X, Y), with v € Y. Since v has at most
d neighbors, it follows that it belongs to at most 2¢ maximal bicliques. Therefore, the total number of maximal bicliques
of G is at most n2¢,

Convex bipartite graphs. Let G = (V,E) be a bipartite graph and let (L,R) be the bipartition of its vertex set, with
L={li,l»,...,1, } and R={ri,r2,...,r, }. A bipartite graph G is called R-convex (see [21]) if there exists a permutation
n of the vertices in R such that the neighborhood of every vertex / € L is an “interval” of the form {7y, 7z(i+1)s - - -»¥n(j) }
in R. The number S(G) of maximal bicliques of an R-convex graph is O(#3). Indeed, a maximal biclique (X,Y) of G
is uniquely determined by the intersection of its vertex set with m(R). Since ¥ N ©(R) is an interval, and the number of
different intervals in n(R) is O(n3), the remark follows.

5. Implementations

Substantial improvements in the practical running time of MCA and MICA can be obtained by noticing that many of
the consensus adjunction operations produce the same outputs, and are therefore redundant. Without going into tedious
details, we are now going to present some of the main ideas that have been used in our algorithmic implementations, and
which appear to be responsible for most of the observed efficiency improvements.

Let us start with some observations. With any subset X of the vertex set V' of a graph G, we can associate another set of
vertices denoted I'(X), containing all those vertices which are adjacent to every vertex in X. We also let I'*(X)=I'(I'(X)).
When I'(X) # (), it is easy to see that (I'*(X), (X)) is a maximal biclique of G, which we call the biclique generated
by I'(X). Moreover, every maximal biclique can be written in the form (I'*(X), (X)) for some (not necessarily unique)
set X. In our implementations, we encode a maximal biclique (I"*(X), (X)) by recording the set I'(X) only, since this
set suffices to determine completely the maximal biclique. When necessary, we recompute I'>(X) from I'(X).

In MICA, the initial list Cy is always taken to be (up to absorptions) the list of generating sets I'({v;}), with v; €V
(i=1,2,...,n). In the course of the algorithm, we maintain a list C of generating sets sorted in lexicographic order, which
allows us to perform efficiently all insertion and absorption checking operations (as mentioned in the proof of Theorem
2).

Our implementation of MICA performs successive stages consisting of consensus and absorption testing operations.
Stage k+ 1 starts with the list W, of maximal bicliques produced at stage k (for the first stage, W is a copy of the initial
list Cy). Then, the algorithm produces the consensus of each maximal biclique in W, with each maximal bicliques in Cp.
(As a matter of fact, an accelerating ingredient of the procedure consists in avoiding the examination of the consensuses
of a biclique B in W, with a star § from Cj, in those cases when B itself is the result of consensus operations which
made use at some previous stage of the star S.) If the resulting consensus is not absorbed by any member of W, it is
extended to a maximal biclique and added to the new list Wj;. When this step is over, Wi, is merged into the sorted
list C (checking again for possible absorptions).

A further acceleration of MICA is obtained using a technical observation which makes it possible when computing the
consensus of two maximal bicliques (one from C and one from () to consider only one of the (up to four possible)
consensuses.

6. Computational results

A large number of computational tests were run on uniformly generated random graphs with 25 to 2000 vertices, and
with 30 to 19990 edges. The algorithms were implemented in Delphi v5. All tests were run on a Pentium IIT 550 MHz
PC.

Since we are not aware of any other algorithm designed to solve MBGP, in order to be able to compare the performance
of the proposed algorithms with other methods, we have adapted for this purpose the lexicographic clique generation
algorithm of [30], as described in Section 3.4; this algorithm will be called LEX in the remainder of the section.

We shall describe below the results of computational experiments using three algorithms: MCA, MICA, and LEX.

A first purpose of the experiments was to perform an empirical comparison of the relative efficiency of MCA, MICA,
and LEX. The results of this comparison are displayed in Table 1. Each row of the table corresponds to a particular
combination of parameters (n, m), and displays average running times (in seconds) over samples of 5 to 10 graphs with
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Table 1
n m Density (%) p Time (s)
LEX MCA MICA
25 30 10 19 0.05 0.05 0.00
25 60 20 50 0.05 0.20 0.00
25 90 30 121 0.17 1.13 0.05
25 120 40 275 0.33 6.37 0.11
25 150 50 658 0.72 69.05 0.28
25 180 60 1791 1.65 535.76 0.71
25 210 70 4905 5.71 1079.02 2.58
25 240 80 15057 16.92 * 12.14
40 78 10 53 0.22 0.16 0.00
40 156 20 199 0.66 4.61 0.06
40 234 30 628 2.20 37.79 0.49
40 312 40 2128 7.36 887.38 1.71
40 390 50 8544 23.29 * 15.33
40 468 60 33334 475.56 * 47.12
50 123 10 88 0.55 0.45 0.06
50 245 20 409 3.02 18.49 0.38
50 368 30 1637 8.85 293.74 1.70
50 490 40 6769 35.48 * 9.12
50 613 50 31591 174.50 * 56.41
50 735 60 138720 2403.92 * 904.51
75 278 10 251 5.54 8.46 0.33
75 555 20 1834 28.28 424.73 3.24
75 833 30 10068 148.13 * 24.44
100 495 10 610 23.7 80.52 0.99
100 990 20 5690 172.68 * 18.79
100 1485 30 41604 1252.79 * 179.05
150 1118 10 2484 75.32 * 10.00
150 2235 20 33003 2954.71 * 275.84
200 1990 10 6845 1516.82 * 47.56
500 2495 2 1502 279.58 * 28.72
1000 9990 2 13779 * * 920.71
2000 19990 1 17755 * * 4163.08

n vertices and m edges. An asterisk in the table indicates that the corresponding algorithm ran out of memory before
termination.

The results in Table 1 establish that, for our implementations of the algorithms, and for the random graphs tested, MCA
performs worse than LEX, which is itself outperformed by MICA. In particular, an important conclusion of this study is
the ability of MICA to handle very large graphs under limitations of computational time. We should also mention that,
for each given graph size, the variance of the computing times is rather small.

It is also interesting to observe that the total number of maximal bicliques § grows quite rapidly with the increase of
density and number of vertices.

From the data in Table 1, we have tried to predict the empirical running time of MICA as a function of the parameters
n, m and f. Using least square regression (and omitting the largest outlier observations), it seems that this empirical
running time is reasonably well estimated (with R* = 0.98) by a function of the form /(n) = cnf log, nlog, , where the
constant ¢ takes a value around 5 x 10~ . The values estimated by the regression model are reported in Table 2, next to
the real observed times. Of course, the conclusion of this analysis must be interpreted carefully, as we did not perform
any large-scale experimental study of the running time. But it seems nevertheless interesting that, for the range of graphs
tested, the observed running time A(n) is smaller than the theoretical upper bound derived in Theorem 3.
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Table 2
n Density (%) MICA time (s)
Predicted Real
25 10 0.00 0.00
25 20 0.02 0.00
25 30 0.05 0.05
25 40 0.12 0.11
25 50 0.34 0.28
25 60 1.06 0.71
25 70 3.28 2.58
25 80 11.40 12.14
40 10 0.03 0.00
40 20 0.15 0.06
40 30 0.58 0.49
40 40 2.42 1.71
40 50 11.16 15.33
40 60 50.09 47.12
50 10 0.08 0.06
50 20 0.47 0.38
50 30 2.32 1.70
50 40 11.42 9.12
50 50 62.60 56.41
75 10 0.44 0.33
75 20 4.36 3.24
75 30 29.38 24.44
100 10 1.76 0.99
100 20 22.15 18.79
100 30 199.26 179.05
150 10 14.27 10.00
150 20 252.35 275.84
200 10 62.64 47.56
500 2 33.38 28.72
Estimated complexity coefficient 0.00000047

Finally, we have also made an attempt to determine whether the distinction between the theoretical complexities of
MICA and LEX (incremental polynomial vs. polynomial delay) would be empirically observable. We have run experiments
on graphs with 40 vertices and density 40%. Fig. 1 displays on the vertical axis the cumulative running time 7'(k) of
each algorithm until it outputs the kth maximal biclique (where k£ is mapped on the horizontal axis). Thus, 7(k) is an
empirical analog of the quantity 7(k) defined in Section 3. In an ideal case 7'(k) would be a linear function of k£ (meaning
that the time spent between successive outputs would be constant). It can be seen in Fig. 1 that MICA’s performance is
close to the desired objective.

7. Conclusions

We have presented a new approach to the problem of generating all maximal bicliques of a graph. This approach
appears interesting, in that it departs radically from previous techniques for related problems, such as the maximal clique
generation problem. Moreover, certain variants of the method are provably efficient, i.e., incrementally polynomial.



20 G. Alexe et al | Discrete Applied Mathematics 145 (2004) 11-21

LEX
g0
E 8
E2
Era
EEN
g 2
=]
Q 0 -+ | T T T 1
0 500 1000 1500 2000 2500
Number of bicliques
MICA
g 2
E
s _ 15
=
)
> 9 1
R
= 0.5
£
Q 0 -+ T T T T 1
0 500 1000 1500 2000 2500

Number of bicliques

Fig. 1.

Our preliminary computational experiments indicate that consensus algorithms in general, and MICA in particular,
constitute an efficient tool for the generation of all maximal bicliques of a graph. More extensive computational experiments
may be necessary to understand more precisely the behavior of MICA on large size instances and on a broader variety
of graph distributions, as well as its relative performance with respect to other possible algorithmic approaches.

Finally, it may be of interest to investigate whether the consensus approaches can give rise to efficient optimization
algorithms for the solution of the maximum (weighted) biclique problem. Note that this is certainly the case for the
approach described in Section 3.4, since this approach allows to rely directly on numerous algorithms developed for the
maximum (weighted) clique problem.
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